DIYneuroscience

Categories of Increasing Human Cognitive Ability

Brain Fitness

Brain Training (Lumosity) Logic Games (Chess, Go)

Learning

Spaced-repetition learning Dual n-back training (memory)

Topic-specific Training Rationality instruction Math or logic problems Affect management (Ekman training) Prolonged sensory deprivation Operant conditioning

Physiology and Nutrition

General physical health Specific types of exercise and yoga Changing the oxygen content of breathe intake Potassium and nutrients/micronutrients in general Paleo and other popular diets Nicotine, caffeine, creatine GHB (Gamma-Hydroxybutyric acid) Irradiation or administration of other toxins Intermittent fasting

Sleep Ability to relax Healthy amount of sleep Lucid dreaming

Practices

Meditation, yoga, exercise, visualization Gratitude, journaling, happiness Music, art, foreign language

Electrical Stimulation

tDCS (transcranial direct current stimulation) rTMS (repetitive transcranial magnetic stimulation) Transcranial Pulsed Ultrasound, Ultrasonic Neuromodulation CES (cranial electrotherapy stimulation), Transcranial Electrotherapy, Sleectrosleep therapy, Neuroelectric therapy Neurofeedback: EEG, etc.

Chemical Caffeine Modafinil Adderall, Riatlin Valproate Steroids

Research Overview

- Mission: review, investigate, and conduct studies regarding the possibilities of increasing human cognitive ability
 - Definitions (cognition, cognitive ability), metrics, measurement, evidence, standards
 - Measures: standards (?) in existing studies, cognitive restoration techniques (stroke), cognitive pathology measures, utility evaluation, translation to everyday life
- Research Questions
 - What kinds of cognitive enhancement techniques are currently available, what is their impact, and what are their future prospects for success?
 - Which classes of techniques could be most/least successful?
 - What are the obvious roadblocks and factors that need to be resolved to move forward?
 - What are worldwide social and philosophical attitudes towards cognitive enhancement (both in cognitive enhancers and the general public)?
- Research Outcome
 - Identify and categorize evidence-based techniques for cognitive enhancement, evaluate future prospects of such efforts, and examine attitudes towards and use of such techniques in clinical and DIY communities

Research Program

- Review current types of cognitive enhancement techniques/studies
- Conduct new studies
 - Personalized genomics
 - Overall cognitive enhancement profile including attention, alertness, concentration; drug response; meditation, relaxation, sleep; pathology predisposition (Alzheimer's disease, Parkinson's disease)
 - Thinking Fast and Slow, Subjective Experience (in process), Quantified Creativity (in planning)
 - Consumer electrical stimulation (tDCS, TMS, neuro-feedback (EEG))
 - Cognitive enhancement attitudes survey (US, Japan cohorts; cognitive enhancers, general public cohorts); philosophy and psychology of cognitive enhancement
 - Consumer-available alternative to valproic acid targeting same mechanisms
 - mRNA transcriptome profile, meditation, flow state, group flow state
- Develop novel analysis methods (statistical, algorithmic, big data pattern analysis, data stream synthesis)

Short-term high-impact Studies Cognitive Performance Genomics

Connecting personal genomics to cognition enhancement

Eras of Application in Personal Genomics

- I. Ancestry, Pre-natal Screening, Forensics
- II. Medical Genomics, Pharmaceutical Response
- III. Social Intelligence, Athletic Performance
- IV. Cognitive Performance and Emotional Mastery
- V. Predictive Profiling: Wellness, Environment, Product Response

Cognitive Performance Genomics

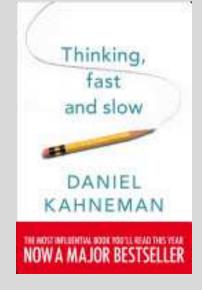
Thinking Fast and Slow: cognitive bias in thinking (loss aversion and optimism bias)

> Creativity and Innovation: process and capacity

General Cognitive Abilities: memory, attention, speed, flexibility, problem-solving

Genes Associated with Cognitive Performance

- Neurotransmitter activation and Neuroplasticity
 - COMT (catechol-O-methyltransferase) protein encoding to inactivate neurotransmitters and hormones
 - BDNF (brain-derived neurotrophic factor) stimulates nerve growth factor; neuroplasticity
 - NRG (neuregulin) related to neuronal development
- Dopamine and serotonin receptors
 - DRD2 (dopamine receptor 2) modulates locomotion, reward, reinforcement, risk-taking, memory, and learning
 - DRD2/ANKK1, DRD4 7+ repeat associated with risk-taking
 - SLC6A3 (solute carrier family 6) encodes a dopamine transporter; terminates the action of dopamine
 - 5-HTT, 5-HTTLPR Dopamine and serotonin transport


Linking Genes to Cognition

	Social Intelligence	Memory	Fast/Slow Thinking	Creativity
5-HTT, 5-HTTLPR Dopamine & Serotonin Transportation			\checkmark	\checkmark
BDNF Neuroplasticity		\checkmark		\checkmark
COMT Val(158)Met, Rewards, Altruism, Gambling	✓	✓	✓	\checkmark
DRD2 Open to experience	\checkmark	\checkmark		\checkmark
DRD2/ANKK1 Risk-taking	\checkmark	\checkmark	\checkmark	\checkmark
NRG Neuregulin, Neuronal development				\checkmark
OXTR Oxytocin Optimism, Empathy	\checkmark			
PDYN Addiction			\checkmark	
SLC6A3, T102C Dopamine transport, impulse control		\checkmark	\checkmark	

Thinking Fast and Slow

- Daniel Kahneman, Nobel Laureate in Economics, 2002
- Decision-making function: two thinking systems are used to make choices
 - Fast, intuitive thinking
 - Slow, rational thinking
- Helps to explain bias and prejudice
 - Why there more chance we'll believe something if it's in a bold type face
 - Why judges are more likely to deny parole before lunch
 - Why we assume a good-looking person will be more competent

Study: Thinking Fast and Slow A. Loss Aversion

- Loss Aversion: loss avoidance vastly preferred to gains
- Neural Processes: reward processing, reward anticipation, action-taking, risktaking and risk-avoidance, impulse control, addiction, and propensity for gambling
- Genes: 5-HTTLPR, COMT Val(158)Met, T102C, DRD2/ANKK1, PDYN
- Instruments (open-source PEBL software)
 - Loss Aversion Task: prospect theory
 - Iowa Gambling Task: real-life decision-making

Study: Thinking Fast and Slow B. Optimism Bias

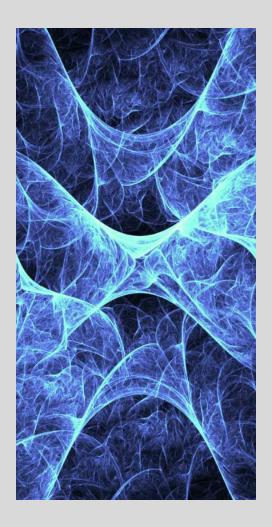
- Optimism Bias: overconfidence, being inaccurately optimistic about outcomes
- Neural Processes: reward processing, positive mindset, attitude towards new experience

- Genes: 5-HTTLPR, COMT Val(158)Met, T102C, DRD2/ANKK1, OXTR
- Instruments
 - Schowmaker's Confident Decision Making test
 - Blavatskyy's Experimental Test of Overconfidence
 - Critch's Credence Game

Study: Thinking Fast and Slow C. Thinking Systems

- Thinking systems: Fast (immediate gut response) and slow (relaxed and deliberative)
- Neural Processes: adrenergic regulation of the hormone epinephrine and the neurotransmitter norepinephrine related to the "fight or flight" response, sympathetic nervous system arousal
- Genes: ADRB1, ADRB2
- Instruments
 - Fight-or-Flight Response Test
 - Fight or Flight Questionnaire

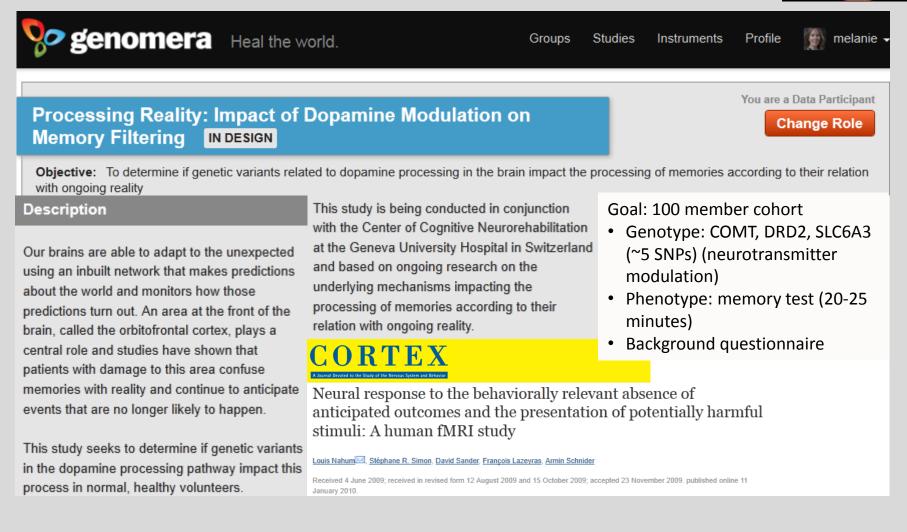
Important Role of Creativity


- Growing field of multi-disciplinary study
 - Biology: natural selection, genomics, neurology
 - Psychology: how the imagination works, cognitive processes employed in creativity
 - Philosophy: Metaphysics (existence definitions, role of consciousness and intentionality), Ethics (Is creativity valuable for its own sake apart from what it produces? Is creativity a virtue?),

Aesthetics

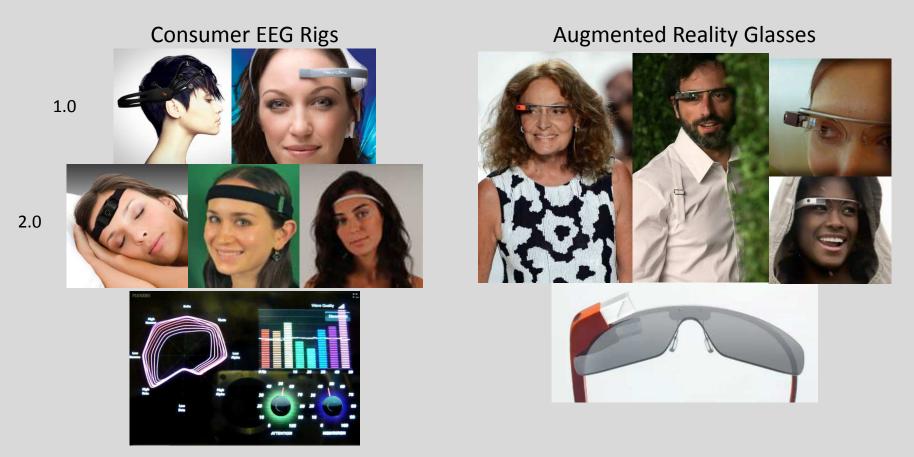
5 Steps in the Creative Process

- **1. Preparation**: Becoming immersed in the area
- **2. Incubation**: Allowing the ideas to turn around unconsciously
- **3. Insight**: the "Aha!" moment when things start to make sense
- **4. Evaluation**: Deciding whether to pursue the insight
- **5. Elaboration**: Translating the insight into its final form



Study: Quantified Creativity

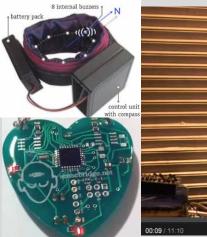
- Creativity: The ability to make or bring something new into existence (*Webster*)
- Neural Processes: Neuroplasticity, dopamine and serotonin transportation, neuregulin (neuronal development), neurotrophic factor (neuron and synapse growth), risk-taking, openness to experience
- Genes: BDNF, 5-HTT , COMT, NRG, DRD2/ANKK1, DRD2
- Instruments
 - Kirton Adaptation Innovation Inventory
 - Buffalo Creative Process Inventory
 - Creativity journal
 - Consumer EEG tracking of gamma spikes



Study: Memory Updating

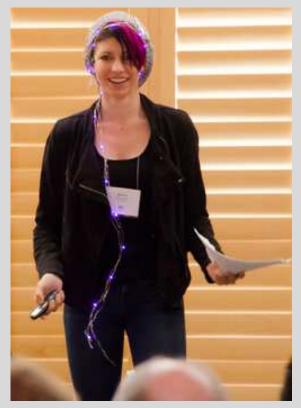
Augmenting the Brain

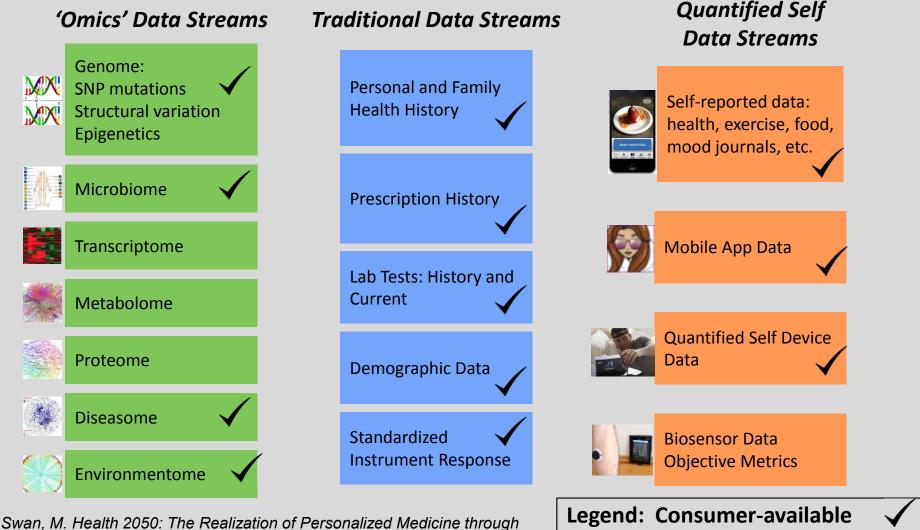
24/7 Consumer EEG, Eye-tracking, Emotion-Mapping, Augmented Reality Glasses


Source: Swan, M. Sensor Mania! The Internet of Things, Objective Metrics, and the Quantified Self 2.0. J Sens Actuator Netw 2012.

Building Exosenses

Extending our senses in new ways to perceive data as sensation


Magnetic Sense: Finger and Arm Magnets



Eric Boyd – Heart Spark http://sensebridge.net/projects/heart-spark/ The North Paw- A Haptic Compass Anklet http://www.youtube.com/watch?v=D4shfNufqSg

Nancy Dougherty – Serendipitous Joy Smile-triggered EMG muscle sensor with an LED headband display

Big Health Data Streams

Swan, M. Health 2050: The Realization of Personalized Medicine through Crowdsourcing, the Quantified Self, and the Participatory Biocitizen. J Pers Med 2012, 2(3), 93-118.

DIYgenomics Study Methodology

- Goal: biophysical performance optimization and preclinical disease prevention
- Generalized hypothesis: Genetic polymorphisms may result in out-of-bounds phenotypic marker levels which may be improved through intervention

	Genotype	+	Phenotype	+	Intervention	=	Outcome
	Cognitive		Standardized		Brain		Improved
I	performance		instrument		fitness		cognitive
	SNPs		response		training		performance

Source: Swan, M., Hathaway, K., Hogg, C., McCauley, R., Vollrath, A. Citizen science genomics as a model for crowdsourced preventive medicine research. J Participat Med. **2010**, Dec 23; 2:e20.