
AI Math Agents

Background

A contemporary challenge is deploying generative AI technologies 
to facilitate scientific advance. Generative AI mainly refers to Large 
Language Models (LLMs), computerized language models with 
billions of parameters (weighting nodes) pre-trained on large data 
corpora, e.g. GPT-4 (OpenAI), LaMDA (Google), and LLaMA (Meta 
AI). LLMs are transformer neural networks, an advance allowing an 
entire data corpus to be processed simultaneously to analyze 
connections between data elements. LLMs could be crucial to 
genomic medicine to process large volumes of multiscalar data and 
find the relevant level of interrelation in the complex domain [1,2].

The important result of LLMs is that they are a language-based 
interface to the computational infrastructure. This means via natural 
language for human-AI chat (e.g. ChatGPT), but more extensively, 
via formal languages such as programmatic code, mathematics, 
and physics for AI-directed computational interaction. The entirety 
of data corpora, not only word-based knowledge bases but also 
software code and mathematics, are being digitized and mobilized 
as available easy-to-use tools. Into this trajectory, the current work 
formulates an AI-based mathematics approach to Alzheimer’s 
genomics, introducing Math Agents, the mathematical embedding, 
and equation clusters as tools for the autonomous evaluation and 
analysis of mathematical ecologies/mathscapes (sets of equations). 

Figure 2. AdS/CFT Equation Clusters in Embedding Visualization (LaTeX and SymPy) 

Conclusion

There is an opportunity to deploy AI-based tools to mobilize 
mathematics as a high-validation data corpus towards broadly 
humanity-benefiting use cases in global disease-preventing healthy 
well-being. Future work could elaborate Math Agent use cases in 
an SIR (sustaining, intervening, recovering) model for the societal 
realization of Precision Health based on two tiers of ongoing 
informational and interventional cycling of the population. Other 
mathematical discovery with AI Math Agents could include synthetic 
data generation to solve complex math ecologies and address 
causality. AI Math Agents with episodic memory (per file time-
stamping) could be deployed in blockchain health ledgers and 
longitudinal personal health dossiers to identify the foundations of 
pathogenesis as dysregulatory genes are activated. In the short 
term, genomic variant and eQTL expression data is indicated for 
practical application to the unresolved challenge of Alzheimer’s 
disease as the only top-five human killer with no survivors.

Figure 6. Embeddings Visualization of Data: Alzheimer’s SNPs applied to Citizen 1, Citizen 2 Precision Health

Results: Alzheimer’s Genomics

Figure 4. Mathematical Ecologies (a) Alzheimer’s + SIR Model (control math); (b) Chern-Simons + AD SNPs
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Figure 1. Embedding Visualization examples with Academic Papers as the Data Corpus

Mathematical Embedding

Alzheimer’s disease genomic risk is analyzed for two precision 
health participants with whole-genome sequencing data (Figure 6). 
An embedding visualization is performed for all GWAS-linked 
Alzheimer’s disease SNPs and presented for Citizen 1 and Citizen 
2’s heterozygous (one alternative allele) and homozygous (two 
alternative alleles) SNPs (a). A gene-level zoom for homozygosity is 
shown to identify possible pathway-related interventional starting 
points. Notably, each individual is homozygous for different subsets 
of genes, with Citizen 1 at higher risk (confirmed empirically by an 
Aβ42/40 blood test). Citizen 1 has immune system related SNPs 
(CD33, HLA-DRB1), and the clathrin binder (PICALM) implicated in 
Alzheimer’s disease. Citizen 2 is homozygous for cancer-
upregulated membrane proteins (TREM) and cytokine-dependent 
hematopoietic cell linkers (CLNK). Both are homozygous for the 
solute carrier protein (SLC24A4) and the intracellular trafficking 
protein nexin (SNX1). Near-far genomic correlation analysis is 
enabled by AdS/CFT multiscalar modeling and deployed via the 
UMAP dimensionality-reduction embedding technique.

The mathematical embedding is novel as an equation encoded in 
the form of a character-based vector string for input to high 
dimensional analysis in machine learning systems. The research 
aim is implementing mathematics as an approach to solving 
problems in data-intensive areas such as gene regulation, aging, 
and Alzheimer’s disease. Causality is difficult to trace across tiers of 
complexity in biosystems. Hence, mathematics for modeling 
multiscalar physical systems is suggested, for example, 
renormalization mathematics which formalize a system-wide factor 
such as symmetry (in the universe) or free energy (in biological 
systems) conserved across scale tiers. Renormalization methods 
AdS/CFT correspondence and Chern-Simons theory are utilized. 

The mathematical embedding visualization of a 476-equation 
AdS/CFT mathematical ecology [6] is rendered with four standard 
embedding models (OpenAI, MultiQA, Code Search, MathBert) in 
LaTeX and symbolic Python (Figure 2). The abstracted view of 
mathematics as embeddings has a distinct structure. Clustering is 
relevant to interpretation (vs x,y values), indicating the grouping of 
similar kinds of equations, irrespective of order of appearance in 
the linear progression of the paper. The result is a new and higher 
level means of interacting with a set of equations, using Code 
Interpreter to “chat with a paper” or “chat with the equations in a 
paper,” graph equations, generate data sets to fit mathematics, and 
write computer code to further vector-embed and evaluate systems 
of equations and model-fit with real-life data.  

AI-enabled mathematics tools are introduced and demonstrated in 
the case of Alzheimer’s disease and aging as information systems 
biology problems. A theoretical model is elaborated, applying 
multiscalar physics mathematics (identifying near-far entropic 
correlations in systems) to disease mathematics and whole-human 
genomic data for two precision medicine participants. Vector 
embedding as a standard machine learning method is employed 
with mathematical equations and genomic data as the input.

Vector embedding is the algorithmic processing of data into 
character strings for high dimensional analysis with results then 
translated back into low dimensional (2D) output for interpretation. 
Used routinely in machine learning, the method primarily targets 
traditional content types (text, images, sound). Word embeddings 
are used in LLMs to process news, social media, and other online 
data corpora such as Wikipedia. Embeddings are starting to be 
developed as a routine big data tool for the analysis of scientific 
content, but are still targeted to words (Figure 1). Visualizations of 
embeddings for three projects, each of which uses the entirety of 
an academic literature as the data corpus, are presented: (a) all 
papers published in 2017 by journal [3], (b) all arXiv paper titles and 
abstracts (2.3 million) [4], and (c) an interactive visualization of the 
ACL Anthology (Association of Computational Linguistics) of 85,000 
papers [5]. The interpretation is that clustering provides a relevant 
signal, with zoom-explorer functionality as visibility into the data set. 

Annotated views illustrate (a) how similar groups of equations are 
grouped in the embedding method and (b) the mouse-over view of 
equation images by equation number (Figure 3 inlay). Equations 
are converted to LaTeX first, then symbolic Python as a readily 
mobilized computational form conducive to automated evaluation. 

Alzheimer’s Genomics and SIR Precision Health

Method

Biophysics renormalization mathematics are applied to Alzheimer’s 
disease mathematics by extending the mathematical embedding to 
Alzheimer’s disease models and genomic data, seen in four 
embedding visualizations of Alzheimer’s disease mathscapes, with 
the SIR model as a mathematics control example [8] (Figure 4a). 
Low overlap is not surprising as the research programs target 
different aspects of Alzheimer’s disease and have different bodies 
of mathematics: transposon dynamics, multiscalar aggregates, tau 
phosphorylation, and protein kinetics [9-12]. The SIR model and the 
protein kinetics embeddings are closer as both mathematical 
ecologies have differential equations as a focal point. The right 
figure examines mathematics and data together (Figure 4b), 
suggesting a better model-fit between the Chern-Simons 
mathematics and the Alzheimer’s SNP data than with the 
transposon dynamics mathematics. Ecosystem analysis is 
implicated in modeling host-virus interactions in transposon indel 
activations of Alzheimer’s disease. One next step is multigenic 
disease risk analysis as pathologies share pathways (Figure 5).

Alzheimer’s genomics is a whole-human genome-based approach 
to Alzheimer’s disease involving GWAS SNPs, EWAS SNPs, eQTL 
transcriptomics (expressed RNA), and transposon indels. Beyond 
the ApoE profile, the current understanding of Alzheimer’s disease 
genomic risk assessment includes multiple factors in a multiscalar 
analysis [7]. First, GWAS SNPs may suggest overall risk propensity 
for the disease. Second, EWAS SNPs may indicate which disease 
genes are actually expressed, as confirmed with transcriptome and 
biomarker assays (Aβ42/40 blood test, CSF). Third, the relation of 
GWAS-EWAS SNPs on a cis-trans (near-far) correlative basis may 
be relevant in terms of how different parts of the genome control 
which genes are expressed. Fourth, transposable elements may be 
related in activating Alzheimer’s disease through genomic insertion-
deletion events produced by viruses and other factors.

The benefit of the mathematical embedding for descriptive and 
interventional mathematics in Alzheimer’s genomics is that the 
entirety of a mathscape (set of equations) can be seen in one at-a-
glance abstracted and consolidated view. The visualization provides 
a first-pass view of the mathematics in a paper in the form of 
equation clusters and mouse-over images of equations. The 
aggregate view also allows related mathematical ecologies to be 
compared, and mathematics and data to be investigated in one 
view as two (ideally corresponding) representations of a system. 
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AD: Alzheimer’s disease; AdS/CFT: anti-de Sitter space/conformal field theory; CSF: cerebrospinal fluid
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SNP: single nucleotide polymorphisms; UMAP: uniform manifold approximation and projection (dimensionality reduction)

Figure 3. Annotated AdS/CFT Equation Clusters

Figure 5. (a) AdS/CFT Mathematical Ecology (b) SIR Mathematics (c) Multi-disease Genomic view: AD, PD, ALS


